water

sediment

SO₄-2

microbe

 $C_6H_{12}O_6$

water

water

$$C_6H_{12}O_6 + SO_4^{-2} \rightarrow CO_2 + S^{-2} + 106H_2O$$

 $\Delta G^0 = -6,720 \text{ kJ}$

How Much Energy Can be Harvested?

water

MARINE SEDIMENTS AS FUEL SOURCES

- typical coastal marine sediments contain ~ 0.5 moles/liter reduced carbon (`2% dry weight)
- energy densities of typical coastal marine sediments are ~10 mWatt-Year/liter (188, 72, and 8.5 mWatt-Year/liter for lithium, alkaline, and lead-acid battery)
 - can be replenished by sedimentation and bioturbation

SEAWATER OXYGEN AS OXIDANT

- typical sea water contains ~ 200 μmoles/liter of oxygen
 - replenished by mass transfer
 - used by seawater batteries sustains 1-5 Watts

water

Current and Near-Future Activities

- •Detailed kinetic and thermodynamic investigation of electrode reactions for various electrode materials
- •Elucidate microbial aspect of energy harvesting mechanism
 - •Deployment of meter-dimensioned prototypes in various marine environments
 - •Investigation of benthic methane-hydrate as a fuel source.
 - Investigation of benthic remediation

Acknowledgments

- •Dr. Harold Bright (ONR)
- •Dr. Robert Nowak (DARPA)
 •NRL

Return to Agenda

Next Presentation